Structural Characterization of an Intermediate in Arene $\mathbf{C}-\mathbf{H}$ Bond Activation and Measurement of the Barrier to $\mathbf{C}-\mathbf{H}$ Oxidative Addition: A Platinum(II) $\boldsymbol{\eta}^{\mathbf{2}}$-Benzene Adduct

Stefan Reinartz, Peter S. White, Maurice Brookhart,* and Joseph L. Templeton*

Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27599-3290

Received July 20, 2001
Transition metal arene complexes display multifaceted coordination chemistry, ${ }^{1}$ and they are key intermediates in aromatic $\mathrm{C}-\mathrm{H}$ bond activation. ${ }^{2,3}$ Most recently, Johansson, Tilset, Labinger, and Bercaw have detected by NMR spectroscopy a platinum(II) benzene complex, [(diimine) $\left.\operatorname{Pt}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mathrm{CH}_{3}\right)\right]^{+}(\mathbf{1})$, a precursor to arene $\mathrm{C}-\mathrm{H}$ oxidative addition. ${ }^{4}$ Given the importance of η^{2}-arene intermediates in aromatic $\mathrm{C}-\mathrm{H}$ bond activation at late transition metals in general, and at platinum in particular, ${ }^{4,5}$ we now report acid-assisted reductive elimination of benzene from a $\operatorname{Pt}(\mathrm{IV})$ phenyl dihydride complex to form a $\mathrm{Pt}(\mathrm{II}) \eta^{2}$-benzene hydride complex which has been characterized by NMR spectroscopy and by single-crystal X-ray diffraction. ${ }^{6}$ Isolation of a ground-state η^{2}-benzene adduct with an adjacent hydride ligand has allowed us to quantitatively assess the barrier to oxidative addition of a benzene $\mathrm{C}-\mathrm{H}$ bond to $\mathrm{Pt}(\mathrm{II})$ by monitoring exchange of the hydride and arene signals in variable temperature NMR experiments.

Protonation of $\operatorname{Pt}(\mathrm{IV})$ complexes of the type $\operatorname{TpPt}(\mathrm{R})(\mathrm{H})_{2}(\mathbf{A})$ [$\mathrm{Tp}=$ hydridotris(pyrazolyl)borate; $\mathrm{Tp}^{\prime}=$ hydridotris(3,5-di-
(1) (a) Muetterties, E. L.; Bleeke, J. R.; Wucherer, E. J.; Albright, T. A. Chem. Rev. 1982, 82, 499. (b) Wadepohl, H. Angew. Chem., Int. Ed. Engl. 1992, 31, 247. (c) Harman, W. D. Chem. Rev. 1997, 97, 1953.
(2) (a) Shilov, A. E.; Shul'pin, G. B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes; Kluwer: Dordrecht, 2000. (b) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879. (c) Jones, W. D.; Feher, F. J. Acc. Chem. Res. 1989, 22, 91. (d) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1984, 106, 1650. (e) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1986, 108, 4814. (f) Jones, W. D.; Dong, L J. Am. Chem. Soc. 1989, 111, 8722. (g) Sweet, J. R.; Graham, W. A. G. J. Am. Chem. Soc. 1983, 105, 305. (h) Werner, R.; Werner, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 793. (i) Hackett, M.; Ibers, J. A.; Whitesides, G. M. J. Am. Chem. Soc. 1988, 110, 1436.
(3) Arene C,C- η^{2}-coordination is not necessarily involved in the bond activation process, see, e.g.: (a) Peterson, T. H.; Golden, J. T.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 455. (b) Vigalok, A.; Uzan, O.; Shimon, L. J. W.; Ben-David, Y.; Martin, J. M. L.; Milstein, D. J. Am. Chem. Soc. 1998, 120, 12539.
(4) Johansson, L.; Tilset, M.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2000, 122, 10846
(5) (a) Johansson, L.; Ryan, O. B.; Rømming, C.; Tilset, M. J. Am. Chem. Soc. 2001, 123, 6579. (b) Thomas, J. C.; Peters, J. C. J. Am. Chem. Soc. 2001, 123, 5100. (c) Johansson, L.; Tilset, M. J. Am. Chem. Soc. 2001, 123, 739. (d) Heiberg, H.; Johansson, L.; Gropen, O.; Ryan, O. B.; Swang, O.; Tilset, M. J. Am. Chem. Soc. 2000, 122, 10831. (e) Johansson, L.; Ryan, O B.; Tilset, M. J. Am. Chem. Soc. 1999, 121, 1974. (f) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed. 1998, 37, 2180. (g) Wick, D. D.; Goldberg, K. I. J. Am. Chem. Soc. 1997, 119, 10235. (h) Holtcamp, M. W. Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1997, 119, 848. (i) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1996, 118, 5961.
(6) For other examples of crystallographically characterized η^{2}-arene complexes, see: (a) Meiere, S. H.; Brooks, B. C.; Gunnoe, T. B.; Sabat, M.; Harman, W. D. Organometallics 2001, 20, 1038 (a rare benzene adduct). (b) Casas, J. M.; Forniés, J.; Martín, A.; Menjón, B.; Tomás, M. J. Chem. Soc., Dalton Trans. 1995, 2949. (c) Tagge, C. D.; Bergman, R. G. J. Am. Chem. Soc. 1996, 118, 6908. (d) Batsanov, A. S.; Crabtree, S. P.; Howard, J. A. K., Lehmann, C. W.; Kilner, M. J. Organomet. Chem. 1998, 550, 59. (e) van der Heijden, H.; Orpen, A. G.; Pasman, P. J. Chem. Soc., Chem. Commun. 1985, 1576. (f) Belt, S. T.; Duckett, S. B.; Helliwell, M.; Perutz, R. N. J. Chem. Soc., Chem. Commun. 1989, 928. (g) Jones, W. D.; Partridge, M. G.; Perutz, R. N. J. Chem. Soc., Chem. Commun. 1991, 264. (h) Belt, S. T.; Helliwell, M.; Jones, W. D.; Partridge, M. G.; Perutz, R. N. J. Am. Chem. Soc. 1993, 115, 1429. (i) Higgitt, C. L.; Klahn, A. H.; Moore, M. H.; Oelckers, B.; Partridge, M. G.; Perutz, R. N. J. Chem. Soc., Dalton Trans. 1997, 1269.
methylpyrazolyl)borate; ${ }^{7} \mathrm{R}=$ alkyl, aryl, or silyl ${ }^{8}$] initiates a cascade of reactions $\mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{C} \rightarrow \mathbf{D}$ as shown in eq 1. Protonation

of $\mathrm{Tp}^{\prime} \mathrm{Pt}\left(\mathrm{SiEt}_{3}\right)(\mathrm{H})_{2}$ leads to an isolable five-coordinate cationic silyl dihydride $\mathrm{Pt}(\mathrm{IV})$ complex, $\left[\kappa^{2}-\left(\mathrm{HTp}^{\prime}\right) \mathrm{Pt}(\mathrm{H})_{2}\left(\mathrm{SiEt}_{3}\right)\right]\left[\mathrm{BAr}_{4}^{\prime}\right]$ (intermediate \mathbf{B} in eq 1) $\left[\mathrm{BAr}_{4}^{\prime}=\right.$ tetrakis(3,5 -trifluromethylphenyl)borate], which has been structurally characterized. ${ }^{9}$ Protonation at a pyrazole nitrogen atom promotes reductive elimination of methane from $\mathrm{Tp}^{\prime} \mathrm{PtMe}(\mathrm{H})_{2}$, and ultimately leads to isolable cationic $\mathrm{Pt}(\mathrm{II})$ hydride complexes of the type $\left[\kappa^{2}-\right.$ $\left.\left(\mathrm{HTp}^{\prime}\right) \mathrm{Pt}(\mathrm{H})(\mathrm{L})\right]\left[\mathrm{BAr}_{4}^{\prime}\right](\mathrm{D})$ after addition of a trapping ligand, L (intermediates \mathbf{B} and \mathbf{C} are not observed). ${ }^{8 g}$ For $\mathrm{R}=$ aryl, we show here that it is possible to isolate the putative $\mathrm{Pt}(\mathrm{II})(\mathrm{RH})$ adduct (\mathbf{C}) prior to ligand exchange.

Protonation of $\mathrm{Tp}^{\prime} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)(\mathrm{H})_{2}(\mathbf{2})^{10}$ with $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]\left[\mathrm{BAr}_{4}^{\prime}\right]^{11}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ yields a single chiral compound (eq 2). ${ }^{12}$

No free benzene is observed. A resonance at 11.67 ppm in the

[^0]${ }^{1} \mathrm{H}$ NMR spectrum is assigned to the protonated pyrazole ring. ${ }^{\text {.ff,9, } 13}$ The lone platinum-bound hydride resonates unusually far upfield at $-30.13 \mathrm{ppm}\left(1 \mathrm{H},{ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=935 \mathrm{~Hz}\right)$, and a singlet in the aromatic region at 6.88 ppm , which integrates for six protons, indicates that a cationic benzene adduct, $\left[\kappa^{2}-\left(\mathrm{HTp}^{\prime}\right) \mathrm{Pt}(\mathrm{H})\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]\left[\mathrm{BAr}_{4}^{\prime}\right]$ (3), has formed. Only one ${ }^{13} \mathrm{C}$ resonance at 115.3 ppm is observed for the six-ring carbon atoms at $-78{ }^{\circ} \mathrm{C}$. Complex 3 slowly undergoes loss of benzene and forms a dicationic hydride-bridged platinum dimer ${ }^{8 g}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 273 K .

If benzene is added to an NMR sample of complex 3 at 193 K , distinct resonances are observed for free (7.33 ppm) and platinum-coordinated benzene (6.95 ppm), indicating that benzene exchange does not occur on the NMR time scale. As the probe temperature is raised to 252 K , both the platinum-bound benzene and hydride resonances broaden significantly, suggesting that hydrogen exchange is occurring between these positions. The signal for free benzene remains sharp. Using the slow exchange approximation at 252 K , a first-order rate constant of $k=47 \mathrm{~s}^{-1}$ was determined via line broadening of the hydride resonance, corresponding to a barrier (ΔG^{\ddagger}) for hydrogen exchange of 12.7 $\mathrm{kcal} / \mathrm{mol}$. As expected, line broadening of the bound benzene resonance is approximately one-sixth that of the hydride resonance. Hydrogen exchange between the bound benzene and hydride positions is also evident from a spin saturation transfer experiment: irradiating the coordinated benzene resonance at 6.95 ppm at 243 K leads to almost complete disappearance of the hydride resonance. We postulate that the five-coordinate $\mathrm{Pt}(\mathrm{IV})$ aryl dihydride intermediate $\mathbf{4}$ is accessible via oxidative addition from the $\mathrm{Pt}(\mathrm{II})$ benzene adduct $\mathbf{3}$, but the $\mathrm{Pt}(\mathrm{II})$ benzene structure is the ground state (eq 2). This result complements protonation studies involving Pt(IV) silyl complexes, where the five-coordinate $\mathrm{Pt}(\mathrm{IV})$ structure is the ground state. ${ }^{9}$

In the $\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)$ system $[\mathrm{Cp} *=$ pentamethylcyclopentadienyl], Jones has established that oxidative addition of benzene occurs via an η^{2}-benzene adduct $\mathrm{Cp} *\left(\mathrm{PMe}_{3}\right) \mathrm{Rh}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right)(5)$, but the ground state in this case is the $\mathrm{Rh}(\mathrm{III})$ phenyl hydride $\mathrm{Cp} *\left(\mathrm{PMe}_{3}\right) \mathrm{Rh}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)(6) .{ }^{2 \mathrm{c}-\mathrm{e}, 14} \mathrm{The}$ barrier for conversion of 5 to $\mathbf{6}$ is unknown.

A potentially attractive alternative route to benzene adduct 3, protonation of $\mathrm{Tp}^{\prime} \mathrm{Pt}\left(\mathrm{CH}_{3}\right)(\mathrm{H})_{2}$ and subsequent addition of excess benzene, does not yield the desired product. Note that the $\mathrm{Pt}(\mathrm{II})$ benzene adduct 1 was also generated by protonation of a $\mathrm{Pt}(\mathrm{II})$ phenyl complex, and not by addition of benzene to a $\mathrm{Pt}(\mathrm{II})$ solvent species. ${ }^{4}$ Addition of 5 equiv of deuteriobenzene $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ to a solution of $\mathbf{3}$ at low temperature does not lead to observable exchange of free and coordinated benzene even after 2 days at 243 K.

Colorless crystals of the benzene adduct $\left[\kappa^{2}-\left(\mathrm{HTp}^{\prime}\right) \mathrm{Pt}(\mathrm{H})\left(\eta^{2}-\right.\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right)$][$\left.\mathrm{BAr}_{4}^{\prime}\right]$ (3) were obtained in 90% yield by slow diffusion of pentane into a methylene chloride solution. A single crystal
(9) Reinartz, S.; White, P. S., Brookhart, M.; Templeton, J. L. J. Am. Chem. Soc. 2001, 123, 6425 .
(10) Reinartz, S.; White, P. S., Brookhart, M.; Templeton, J. L. Organometallics 2001, 20, 1709.
(11) Brookhart, M.; Grant, B.; Volpe, A. F., Jr. Organometallics 1992, 11, 3920.
(12) ${ }^{1} \mathrm{H}$ NMR data for complex $3\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 193 \mathrm{~K}, \delta\right): 11.67(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{pz} * \mathrm{~N} H), 6.88$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{PtC}_{6} H_{6}$), 6.26, 5.93, 5.91 (s, 1 H each, $\mathrm{HTp}^{\prime} \mathrm{C} H$), 2.32, 2.31, 2.27, 1.86, 1.59 (s, 6H, 3H, 3H, 3H, 3H, HTp'CH $)^{\prime}$, -30.13 (s, 1H, $\left.{ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=935 \mathrm{~Hz}, \mathrm{Pt}-H\right)$.
(13) (a) Ball, R. G.; Ghosh, C. K.; Hoyano, J. K.; McMaster, A. D.; Graham, W. A. G. J. Chem. Soc., Chem. Commun. 1989, 341. (b) Rheingold, A. L.; Haggerty, B. S.; Trofimenko, S. Angew. Chem., Int. Ed. Engl. 1994, 33, 1983. (c) Wiley: J. S.; Oldham, W. J., Jr.; Heinekey, D. M. Organometallics 2000, 19, 1670.
(14) For certain substituted arenes, the η^{2}-arene complexes are the more stable isomers. See refs 2d, f.

Figure 1. ORTEP diagram of $\left[\kappa^{2}-\left(\left(\mathrm{Hpz}^{*}\right) \mathrm{BHpz}_{2}{ }_{2}\right) \mathrm{Pt}(\mathrm{H})\left(\mathrm{C}, \mathrm{C}-\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]-$ [$\left.\mathrm{BAr}_{4}^{\prime}\right]$ (3); ellipsoids are drawn at the 50% probability level, and the $\mathrm{BAr}_{4}^{\prime}$ counterion is omitted for clarity.

Table 1. Selected Bond Distances (\AA) and Angles (deg) for Complex 3

$\mathrm{Pt} 1-\mathrm{C} 11$	$2.241(11)$	$\mathrm{Pt} 1-\mathrm{N} 31$	$2.171(8)$
$\mathrm{Pt} 1-\mathrm{C} 12$	$2.214(11)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.360(24)$
$\mathrm{Pt} 1-\mathrm{N} 21$	$2.037(6)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.35(3)$
$\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{C} 12$	$35.5(6)$	$\mathrm{C} 12-\mathrm{Pt} 1-\mathrm{N} 31$	$94.2(4)$
$\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{N} 21$	$167.3(5)$	$\mathrm{N} 21-\mathrm{Pt} 1-\mathrm{N} 31$	$87.1(3)$
$\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{N} 31$	$99.3(5)$	$\mathrm{Pt} 1-\mathrm{C} 11-\mathrm{C} 12$	$71.2(7)$
$\mathrm{C} 12-\mathrm{Pt} 1-\mathrm{N} 21$	$155.6(4)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$119.7(14)$

was subjected to X-ray structural analysis; an ORTEP diagram is shown in Figure 1. The hydride ligand on platinum was not located in the difference Fourier map, and thus it is placed in a calculated position. The benzene ligand indeed coordinates in η^{2} fashion to the square-planar $\mathrm{Pt}(\mathrm{II})$ center. The orientation of the plane of the aromatic ring versus the metal plane is almost perpendicular (tilt angle: 82.5°), ${ }^{6 \mathrm{a}, 15}$ and the $\mathrm{Pt}-\mathrm{C}$ distances $(2.24$ and $2.21 \AA$) lie in the expected range for this coordination mode. ${ }^{6}$ The orientation of the benzene ring is probably responsible for the unusual upfield shift of the hydride resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum of complex 3: the hydride ligand is placed in the shielded area directly above the aromatic ring. ${ }^{16}$

Isolation and structural characterization of a $\mathrm{Pt}(\mathrm{II}) \eta^{2}$-benzene complex provide detailed information about an arrested intermediate in aromatic $\mathrm{C}-\mathrm{H}$ bond activation at platinum. The barrier for the arene $\mathrm{C}-\mathrm{H}$ oxidative addition reaction which converts a Pt (II) η^{2}-benzene adduct to a $\operatorname{Pt}(\mathrm{IV})$ phenyl hydride complex has been determined and found to be $12.7 \mathrm{kcal} / \mathrm{mol}$.

Acknowledgment. We gratefully acknowledge the National Science Foundation (Grant CHE-9727500) and the National Institutes of Health (Grant GM 28938) for support of this research.

Supporting Information Available: Complete synthetic and spectroscopic data (PDF) and crystallographic data, in CIF format, for complex 3. This material is available free of charge via the Internet at http://pubs.acs.org.

JA011765P

[^1]
[^0]: (7) Trofimenko, S. Scorpionates-The Coordination Chemistry of Polypyrazolylborate Ligands; Imperial College Press: London, 1999.
 (8) (a) O’Reilly, S. A.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc. 1996, 118 , 5684. (b) Canty, A. J.; Dedieu, A.; Jin, H.; Milet, A.; Richmond, M. K. Organometallics 1996, 15, 2845. (c) Wick, D. D.; Goldberg, K. I. J. Am. Chem. Soc. 1999, 121, 11900. (d) Haskel, A.; Keinan, E. Organometallics 1999, 18, 4677. (e) Reinartz, S.; White, P. S., Brookhart, M.; Templeton, J. L. Organometallics 2000, 19, 3748. (f) Reinartz, S.; White, P. S., Brookhart, M.; Templeton, J. L. Organometallics 2000, 19, 3854. (g) Reinartz, S.; Baik, M. H.; White, P. S., Brookhart, M.; Templeton, J. L. Inorg. Chem. 2001, 40, 4726.

[^1]: (15) Pt (II) ethylene complexes also show perpendicular orientation of the ethylene ligand with respect to the platinum square plane, see, e.g.: (a) ref 8f, (b) Baar, C. R.; Jenkins, H. A.; Yap, G. P. A., Puddephatt, R. J. Organometallics 1998, 17, 4330. (c) Jarvis, J. A. J.; Kilbourn, B. T.; Owston, P. G. Acta Crystallogr. 1971, B27, 366.
 (16) Bercaw et al. propose a similar benzene orientation to account for the unusual upfield ${ }^{1} \mathrm{H}$ chemical shift of the methyl group in complex $1 .{ }^{4}$

